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A correlation function formalism is applied to compute the two-photon absorption spectrum of benzene.
Using harmonic Hamiltonians for the ground and excited electronic states, we find that the theory agrees
qualitatively with the experimentally observed sparsity of the thermal two-photon absorption spectrum as
compared with the single-photon absorption spectrum. An expression for the average vibrational energy in
the excited state is derived. We find that cooling of the nascent vibrational energy in the electronically excited
state is not as extensive in the two-photon absorption process as compared to the single-photon case.

I. Introduction

The transition probability for two-photon absorption (TPA)
was first considered ca. 70 years ago by Goppert-Mayer using
second-order perturbation theory.1 Even today, the topic remains
of interest.2-4 Applying TPA to explore inorganic and organic
materials3,4 is attractive because the selection rule followed by
TPA is different from that of the one-photon transition; therefore,
they complement each other by reaching different vibronic
states.

In principle, the theory of TPA is well-understood. Theoretical
studies have shown how to calculate the TPA cross-section as
well as the transition moments needed as input.5-11 A very
convenient method for computing the transition probability is
by use of correlation functions12-14 because it avoids the rather
complicated multicenter integrals needed when applying a wave
function approach.12,13

The first objective of the present work is to apply the
correlation function method to compute the TPA spectrum in
the benzene molecule. As long as one limits oneself to harmonic
Hamiltonians, one may derive analytic expressions for the four-
point dipole correlation functionQ. The TPA spectrum is then
obtained as a special three-dimensional Fourier transform of
this correlation function. We are not aware of any previous
attempts at computation of a thermal TPA spectrum of a
polyatomic molecule as big as benzene using this methodology.

Our interest in the theory of TPA stems also from recent
studies on the photoinduced cooling of the nascent vibrational
population in electronically excited states.15-20 We found that
in single-photon excitation the vibrational distribution in the
excited electronic state may be significantly cooled relative to
the ground-state thermal population. This happens when the
ground-state molecular Hamiltonian does not differ too much
from the excited-state molecular Hamiltonian. Because frequen-
cies in the excited electronic state are usually somewhat lower
than in the ground state, cooling may be found in the vicinity
of the 0-0 transition frequency and to the red of it.16 The
question we posed to ourselves in this paper is whether there is
any difference between single-photon and two-photon absorption
in this respect. Extensive cooling was found in the single-photon
excitation of benzene,18 and so we chose this same molecule to
try and understand what happens in TPA. In addition to
computing the TPA spectrum, we also demonstrate how one

may compute the average energy in the excited electronic state
from the four-point correlation function. The major finding of
this study is that, at least for the harmonic benzene model
considered here, TPA does not lead to extensive cooling in the
excited state.

In section II, we review the theory of two-photon absorption
and derive an explicit expression for the frequency dependence
of the nascent average vibrational energy in the electronically
excited state. This formulation is then applied to the benzene
molecule in section III. Finally, in section IV, we present a brief
summary and indicate how to apply the same methodology to
calculate Raman scattering and third- or higher-order suscep-
tibility.

II. The Two-Photon Absorption Spectrum and Average
Vibrational Energy in the Electronically Excited State

A. Harmonic Approximation. A molecule is characterized
by its electronic, vibrational, rotational, and translational states.
At room temperature or lower, typical of most spectroscopy
experiments, the velocity of the molecules does not give rise to
a strong Doppler effect and so may be neglected. Rotation-
vibration coupling affects selection rules; the rotational structure
of the TPA spectrum can be clearly seen in high-resolution
experiments.21,22However, they are a finer effect than the change
in the vibrational states. We will neglect the influence of the
rotational states on the TPA process.

With these assumptions, the state of a molecule|A〉 is a direct
product of its electronic state|Ael〉 and its vibrational state|Av〉;
|A〉 ) |Ael〉 |Av〉. The electron-vibration coupling realizes itself
through the vibrational coordinate dependence of the transition
moments. The harmonic Hamiltonians of the ground and excited
electronic states are assumed to be harmonic

Here,qR andpR are the mass-weighted coordinate and momen-
tum operators of theRth normal mode andM is the number of
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normal modes. The equilibrium point of theRth normal mode
in the electronically excited states is shifted byqR0 relative to
the ground state. We ignore Duschinskii rotations;23 they are
not very important for the benzene molecule.18 The initial state
of the molecule is thus characterized as|elg〉 |n1

g(i)‚‚‚nM
g (i)〉; its

energy isEi ) ∑R)1
M (nR

g(i) + (1/2))pωR
g. It depends onn1

g(i), ‚‚‚,
nM

g (i) the occupation numbers for each of the normal modes.
The ground-state energy isYg ) ∑R)1

M (1/2)pωR
g. Similarly, the

final state is characterized by|ele〉 |n1
e(j)‚‚‚nM

e (j)〉, its energy
Ej ) ∑R)1

M (nR
e(j) + (1/2))pωR

e + ∆E measured relative to the
energy zero of the ground state, andn1

e(j),‚‚‚, nM
e (j) are the

occupation numbers of each normal mode in the electronically
excited state. The ground-state energy isYe ≡ ∑R)1

M (1/2)pωR
e +

∆E. The 0-0 transition frequency is defined aspω00 )
Ye - Yg.

The harmonic approximation is appropriate when considering
the thermal absorption spectrum of a molecule such as benzene
at room temperature. However, when considering two-photon
absorption, in which the first photon induces an excitation to a
high-lying vibrational state, the harmonic approximation for the
intermediate states is expected to fail, at least quantitatively.
However, it is impossible to compute the TPA spectrum when
the ground-state Hamiltonian is anharmonic; moreover, the
anharmonicity of the ground state at the high energies involved
is not that easily accessible even with present-day ab initio
techniques. We therefore make do with a strictly harmonic
approach. With these assumptions, an explicit expression for
the four-point dipole thermal correlation function is derived in
Appendix A. Here, we note that a novel element in the derivation
is the simplification due to the use of a generating function
approach.

B. The Two-Photon Absorption Spectrum. In the har-
monic approximation stated in the previous section, the initial
state |A〉 of the molecule is one of the vibrational states
|n1

g(A)‚‚‚nM
g (A)〉 in the electronic ground state|elg〉. For a

thermal distribution of molecules at temperatureT, the prob-
ability that the molecule is in state|elg〉 |n1

g(A)‚‚‚nM
g (A)〉 is

given by the Boltzmann factorpA ) (e-âEA)/[Zg(â)]; the partition
function for the harmonic Hamiltonian is well-known12

The TPA process involves two photons characterized re-
spectively by the modes (kB, δ) and (kB′, δ′) with associated
frequenciesω ) c|kB| and ω′ ) c|kB′|, wherekB and δ are the
wave vector and polarization direction of the photon andc is
the speed of light. The thermal transition probability per unit
time from the ground state to an electronically excited state|B〉
is24 ∑A(|cBA

(2)(t)|2/tII ′)pA, wherecBA
(2)(t) is the second-order transi-

tion amplitude from state|A〉 to state|B〉, t is the time during
which the molecule is irradiated by the electromagnetic field,
and I is the intensity of the incident light for the mode (kB, R),
and it is related to the occupation numbernkR by IkR ) cpωknkR/
V. V is the normalization volume in a discrete description of
the field.

The total absorption probability is obtained by summation
over all possible final states. Because we will be interested only
in the relative absorption intensities among different excitation

frequencies, a constant factor [(2π)3/p2]R2 is dropped out, where
R ) (e2/4πε0pc) is the fine structure constant. The relative
probability that the molecule absorbs two photons with respec-
tive frequenciesω andω′ is24,25

whereeδ′
kR is theδ′th Cartesian component of the polarization

vectorebkR. The coefficient is given by the expression

whereR andR′ are the indices of the intermediate states and
the transition frequencies are defined asωRA ) (ER - EA)/p
andωBA ) (EB - EA)/p. EB, ER, andEA are the energies of the
respective states|B〉, |R〉, and |A〉. µδ

BR is the δth Cartesian
component of the dipole operatorµb̂BR ) 〈Bel|∑j xbj |Rel〉, µδ′

RA is
the δ′th Cartesian component of the dipole operatorµb̂RA )
〈Rel|∑j xbj |Ael〉, andxbj is the coordinate of thejth electron. The
electronic wave functions|Ael〉, |Rel〉, and|Bel〉 include the nuclear
coordinates so thatµb̂BR and µb̂RA are functions of the nuclear
coordinates and are operators operating on the vibrational states
|Av〉, |Rv〉, and|Bv〉.

The four-point dipole correlation function is defined as

whereHB, HR, andHA are the vibrational Hamiltonians in the
electronic states|Bel〉, |Rel〉, and |Ael〉. The relative absorption
strength, eq 2.3, can be expressed as a special 3-fold Fourier
integral of the four-point dipole correlation function.12 By using
the identities

and
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QRR′R′′R′′′(s, τ, τ1, â) ) 1
Zg(â)

Tr[exp(-isHB/p) µR
BR

exp(iτHR/p) µR′
RA exp[(is - iτ - iτ1)HA/p - âHA] µR′′

AR′

exp(iHR′τ1/p) µR′′′
R′B] (2.5)

δ(ωBA - ω - ω′) ) 1
2π ∫-∞

∞
ds exp[-is(ωBA - ω - ω′)]

(2.6)

1
ωRA - ω - iλ

)

i ∫-∞

0
dτ exp[iτ(ωRA - ω - iλ)],

1
ωR′A - ω + iλ

)

-i ∫0

∞
dτ exp[iτ(ωR′A - ω + iλ)], λ f 0+ (2.7)
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one finds that eq 2.4 is rewritten as

For a realistic molecule, the intermediate states and the final
states are quasidiscrete, and the four integrands in eq 2.8 decay
sufficiently rapidly with time so that the integral converges.
However, the integrands calculated from the harmonic energy
surfaces are quasiperiodic functions. In eq 2.3, the two photons
are plane wave states (kB, R) and (kB′, R′) which are infinite in
the space and time domains, so that, strictly speaking, all four
integrals in eq 2.8 diverge.

This difficulty is avoided when using photon pulses. For the
sake of analytical simplicity, we will use Gaussian pulses
centered atω0 and with variance∆. Averaging eq 2.3 over the
Gaussian incident pulses leads to our final expression for the
TPA spectrum

where

and

Because of the exponential decay factors in eqs 2.12 and 2.13,
the integral in eq 2.10 is convergent.

C. Averaging Over the Molecular Orientations. If a
molecule is fixed in space, as would be the case, for example,
in a crystal, the incident direction of light is fixed relative to
the orientation of the molecule. The absorption spectrum is
determined by one term in eq 2.10 supplemented with some
rotational state which specifies the molecule’s orientation. In
the gas phase, molecules are freely rotating in space relative to
the laboratory coordinate system, and this free rotation must
be accounted for.

For elliptically polarized light incident in thex direction, the
polarization vector is written as

b1 andb2 are two real numbers;Ey andEz are the electric field
components along they andz axes. The two elliptical polariza-
tion vectorseb(+) andeb(-)can be expressed in terms of the linear
polarization vectorseb(ê)andeb(η)as

Because the orientation of the molecule in the final state is not
detected and the molecule in the initial state is freely rotating,
one must sum over all the orientations in the final state and
average over the orientations in the initial state.25 This is effected
by summation over the rotational quantum number of the final
states and averaging over the rotational quantum number of the
initial states, similar to the famous Placzek treatment for
scattering.26 The square bracket in eq 2.10 is changed into

where

For unpolarized light, the square bracket in eq 2.10 is

for elliptically polarized light, the square bracket in eq 2.10 is

and for linearly polarized light, the square bracket in eq 2.10 is
(1/5)As.

Dδδ′δ′′δ′′′
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D. The Average Energy in the Electronically Excited State
after TPA. The average vibrational energyEv

e in the elec-
tronically excited state after absorbing two photons with
frequency (ω, ω′) is

The expression in square brackets in the numerator is propor-
tional to the probability of reaching the final statej from the
initial state i. As shown in Appendix B, using a similar
procedure as in subsection II.B, and following the derivation
of the expression for the average energy in the single-photon
excitation,15,16 one finds that after averaging over a Gaussian
incident pulse the average energy in the excited state is given
by the expression

where the last term on the right-hand side results from the
Gaussian pulse shape. It vanishes in the limit of a continuous
wave laser for which∆ ) 0. We stress that the use of a Gaussian
pulse shape is only for numerical simplicity. It is straightforward
to derive a similar epxression for an arbitrary pulse shape.

III. Harmonic Theory of TPA for Benzene

For benzene, the static transition momentsµR′′′0
ge and µR′0

gg

equal zero for all 30 modes. Only a few coefficientsµR′′′j
ge (µR′j

gg)
of the vibration-induced moment∑j)1

M µR′′′j
ge qj (∑j)1

M µR′j
ggqj) are

nonzero. The Cartesian components of the coefficientsµR′′′j
ge of

the transition moment27 and the coefficientsµR′j
gg of the induced

dipole moment,28 which are needed for determining the TPA
spectrum, are not available from the literature; only their
absolute values are known. We therefore neglected any differ-
ences between different components and equated anyµδj

ge(µδj
gg;

δ ) x, y, z) with its absolute valuedj
ge (dj

gg) although we are
aware that for a planar molecule such as benzene this is not a
really good approximation.

The correlation function in eq A.29 (see Appendix A) is a
product of many sine or cosine functions and is highly
oscillatory. To carry out the integral in eq 2.10 with appropriate
precision, we used the fast Fourier transform (FFT) method.
The highest frequency in benzene isνmax ) 3187 cm-1; the
largest time interval which may be used that can still reflect
the time variation of the four-point correlation function will thus
be dt ≈ (1/cνmax) ≈ 1 × 10-14 sec. For a frequency resolution
of dω ) 20 cm-1 in the spectrum, the number of time steps
Nt’s has to be larger than 103 to satisfy the FFT requirement dt
dω ) (2π/Nt), whereNt ) 2n with n a nonnegative integer.
This implies that we must choosen g 10; in all computations,
we usedn ) 10. A stringent check for the convergence of the

numerics is that indeed the computed TPA spectrum is positive.
When using a grid spacing which is too large, one finds negative
absorption probabilities.

For benzene,ω00 ) 38 086 cm-1.29 Apart from the ambiguity
in the choice of the Cartesian components of the induced
transition moment, all other input is known from either
experiment or ab initio computations, as detailed in ref 18. The
input parameters are listed in Table 1: they are the vibrational
frequenciesν̃j

g and ν̃j
e in the electronic ground and excited

states, respectively, the displacementq0j of the equilibrium point
of each normal mode in the excited state, the coefficientdj

eg of
the induced transition moment between the electronic ground
state and excited state, and the coefficientdj

gg of the induced
average dipole moment in the ground state.

The TPA spectrum as calculated from eqs 2.10 and A.29,
with ω ) ω′, is shown in Figure 1 for two different tempera-
tures. The qualitative features are consistent with the experi-
mentally measured TPA spectra in the gas29 and crystalline
phases.30,31 Comparing the theoretical TPA spectrum with the
single-photon spectrum,18 we note that the TPA spectrum is
much sparser, in agreement with the experimental observations.
In the calculated spectrum, some experimental absorption lines
do not appear because of the use of the harmonic ground
electronic state Hamiltonian also for the intermediate states. The
hot bands32 do appear and are presented more clearly in Figure
2 where the theoretical spectrum is displayed on a logarithmic
scale. Differences between 300 and 400 K are minor; the higher
temperature broadens the spectrum somewhat and increases the
amplitude of the hot bands.

The average energy in the excited state is displayed in Figure
3. The dotted line in the figure denotes what the average
vibrational energy in the excited state would be if the nascent
temperature were identical to the ground-state vibrational
temperature. It is evident that although there is a bit of cooling
in the hot band region of the spectrum at 37 530 cm-1

(corresponding to the transition 141
0161

1 10
1,32 which is to the red

of the ω00 transition frequency), the overall cooling effect is
much smaller than that found in the single-photon absorption
of benzene. As also found for single-photon absorption, cooling
does become more pronounced as the temperature is increased.

Ev
e(ω, ω′) )

∑
j

Eej[∑
i

|cji
(2)|2

tII ′
pi]

∑
j

[∑
i

|cji
(2)|2

tII ′
pi]

(2.17)

Ev
e(ω0, ∆, â) ) 2pω0 - ∆E -

∂ ln g(ω0, ∆, â)

∂â
+ 〈Eg〉 +

ip∆2

g(ω0, ∆, â)

1

2π
∫-∞

∞
ds∫-∞

0
dτ ∫0

∞
dτ′

exp[iω0(2s - τ - τ′)] exp(-is∆E/p)(2s - τ - τ′)

[ ∑
δδ′δ′′δ′′′

eδ
k′R′ eδ′

kR eδ′′
k′R′/ eδ′′′

kR/Mδδ′δ′′δ′′′(s, τ, τ′, â)] (2.18)

TABLE 1: Input Data for Benzene

mode νg
a(cm-1) νe

a(cm-1) q0 deg a dgg b(D/Å)

a1g 3187 3204 0.415 0.000 0.000
a1g 979 902 1.710 0.000 0.000
a2g 1353 1323 0.000 0.000 0.000
e2g 3155 3174 0.000 0.065 0.000
e2g 1611 1560 0.000 0.257 0.000
e2g 1173 1151 0.000 0.088 0.000
e2g 592 529 0.000 0.217 0.000
b1u 3145 3165 0.000 0.000 0.000
b1u 998 963 0.000 0.000 0.000
b2u 1342 1739 0.000 0.000 0.000
b2u 1163 1149 0.000 0.000 0.000
e1u 3173 3189 0.000 0.000 -0.780
e1u 1479 1400 0.000 0.000 -0.320
e1u 1023 916 0.000 0.000 -0.510
b2g 916 641 0.000 0.000 0.000
b2g 650 434 0.000 0.000 0.000
e1g 781 548 0.000 0.000 0.000
a2u 631 480 0.000 0.000 -1.430
e2u 891 628 0.000 0.000 0.000
e2u 383 262 0.000 0.000 0.000

a νgj, νej, q0j, and dj
eg are taken from ref 18;q0j is dimensionless,

given in units ofx(p/mpωj
e); dj

eg is dimensionless.b dj
gg is adapted

from ref 27.
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We also note that the average energy is approximately a linear
function of the excitation frequency; the slope is roughly 2 as
expected for TPA with photons of equal frequency.

IV. Summary and Discussion
The absorption spectrum and the average energy in the excited

state for the case of two-photon excitation are expressed as a
special Fourier integral (eqs 2.10 and 2.18) of the four-point
dipole correlation function. For harmonic potential energy
surfaces, the correlation function can be obtained analytically
as in eq A.29. Introducing generating functions as in Appendix
eqs A.2 and A.3 saves some heavy labor as compared with a
direct calculation of the correlation function.

Applying this formulation to benzene, we find a thermal two-
photon absorption spectrum which agrees roughly with experi-
ment. There are two major sources of error in our computa-
tion: (1) The intermediate states, which are the highly excited
vibrational states in the electronic ground state, are not ac-
curately accounted for with a harmonic potential energy surface.
(2) The relative absorption strength is much more sensitive to
the orientation of the molecule and the polarization of the
incident radiation. Although we worked out the formalism in
subsection II.C, we had to resort to a more approximate
calculation because of the lack of information on the Cartesian
components of the coefficients of the induced transition mo-
ments.

Even with these limitations, the results presented here are a
step forward. Computation of the triple Fourier transform needed
for the spectrum is not trivial and would not have been possible
without the significant advances of present-day computers in
terms of storage space and processor speed. Still, we had to
resort to a frequency resolution of 20 cm-1. The computation
of a single spectrum took a few weeks on a multiprocessor PC
farm. We are not aware of any previous attempt to compute
the TPA spectrum for a molecule with the size of benzene.

A second result of this study is the computation of the nascent
average vibrational energy in the excited state following TPA.
Interestingly, we found that vibrational cooling is much less
important in TPA than in the single-photon absorption experi-
ment. The cooling effect for TPA is determined by the transition
momentsµge andµgg for each mode and the selection rule (i.e.,
the symmetry of a specific molecule). Only states whose energy
is close to the vibrational ground state of the ground electronic
state are well-populated; therefore, many strong peaks in the
vicinity of the 0-0 transition are needed for strong cooling.
For benzene, because of the selection rules, the TPA peaks are
too few and weak near the 0-0 transition frequency. This is
the probable reason for the lack of a cooling effect. This does
not preclude the possibility that for larger more structured
molecules the cooling effect in TPA would become more
important.

The present study was limited to the use of two photons of
equal frequency. It would be of interest to probe the full two-
dimensional TPA absorption spectrum as a function of different
photon frequencies. The formalism presented in this paper makes
this possible, albeit with a substantial investment in computa-
tional resources. Such a study would also shed more light on

Figure 1. The thermal TPA absorption spectrum. In panels a and b,
the solid line is the result computed from the harmonic theory of this
paper (with frequency intervaldω ) 20 cm-1 and excitation pulse width
∆ ) 20 cm-1). Other data are taken from Table 1. The dashed-dotted
line is the gas-phase experimental TPA spectrum taken from ref 29;
the dotted line is the crystalline experimental TPA spectrum of refs
30-31. The calculated absorption spectrumg(ω0, ∆, â) is normalized
to unity by its maximum value in the entire range of frequency. Panels
a and b are for ground-state temperaturesT ) 300 and 400 K,
respectively.

Figure 2. Natural logarithm of the TPA absorption intensity at two
different temperatures. The hot band absorption is clearly displayed.
Other details are as in Figure 1.
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the possibility of controlling the nascent vibrational energy in
the excited electronic state using TPA.

As is well-known, the theories for the Raman scattering
spectrum and the third- or higher-order susceptibility have a
structure which is similar to that of eqs 2.3 and 2.4. By making
use of eq 2.7, these quantities can be changed into a multidi-
mensional Fourier transform of a multidipole correlation func-
tion. Assuming a harmonic Hamiltonian would then allow
evaluation by following a procedure similar to the one detailed
in the Appendix.
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Appendix A: An Analytic Expression for the Four-Point
Dipole Correlation Function

The four-point dipole correlation function is defined as

It is possible to calculate it directly for harmonic Hamiltonians;
however, this would be very lengthy. A more elegant route is
by using a generating functionG for the correlation function

whereφ1, φ2, φ3, andφ4 are four real parameters. Then, the
correlation functionQ can be deduced fromG by noting that

Before deriving the expression forG, we introduce the
Herzberg-Teller approximation for the dipole moment operators
in eq A.1. For the transition moment between the intermediate
state and the excited state,µR′′′

ge andµR
eg,33 we use

The constant term in each expression is the static value of the
transition moment; the second term is the contribution induced
by the various vibrational modes in both the excited and ground
electronic states.27

Because the intermediate states are in the electronic ground
state, the transition momentµgg between the intermediate state
and the ground state is the average dipole operator in the
electronic ground state:

The constant term is the static value of the dipole; the additional
terms are the vibrationally induced dipole moments.

The harmonic Hamiltonians and the Herzberg-Teller ap-
proximation are separable (see eqs 2.1, A.4, and A.5), so that
the generating functionG may be factored into a product of
mode-generating functions:

where the single mode-generating functions take the form

In the coordinate representationGj becomes a 4-fold Gaussian
integral about coordinates by applying the well-known expres-
sion for the harmonic oscillator propagator for each evolution
operator whether with real or complex time. The Gaussian
integrals are readily carried out. After substitutingGj into

Figure 3. The average energy in the excited state following TPA
excitation at two different temperatures. The dotted line shows the value
of the excited-state average energy at the ground-state temperature. Note
that only the hot band absorption displays cooling. Other details are as
in Figure 1.

Q(s, τ, τ′, â) ) Tr{µR′′′
ge exp(-isHe/p)µR

egexp(iτHg/p)µR′
gg

exp[(is - iτ - iτ′)Hg/p - âHg]µR′′
gg exp(iHgτ′p)} (A.1)

G(s, τ, τ′, â) ) Tr{exp(φ1µR′′′
ge ) exp(-isHe/p) exp(φ2µR

eg)

exp(iτHg/p) exp(φ3µR′
gg) exp[(is - iτ - iτ′)Hg/p - âHg]

exp(φ4µR′′
gg) exp(iHgτ′p)} (A.2)

Q ) ∂

∂φ1

∂

∂φ2

∂

∂φ3

∂

∂φ4
G|φ1)φ2)φ3)φ4)0 (A.3)

µR′′′
ge ) µR′′′0

ge + ∑
j)1

M

µR′′′j
ge qj, µR

eg ) µR0
eg +

∑
j)1

M

µRj
egqj, R′′′, R ) x, y, z (A.4)

µR′
gg ) µR′0

gg + ∑
j)1

M

µR′j
ggqj, µR′′

gg ) µR′′0
gg +

∑
j)1

M

µR′′j
gg qj, R′,R′′ ) x, y, z (A.5)

G ) exp(φ1µR′′′0
ge + φµ2R0

eg + φ3µR′0
gg + φ4µR′′0

gg )∏
j)1

M

Gj (A.6)

Gj ) Tr[exp(φ1µR′′′j
ge qj) exp(-isHe

j /p) exp(φ2µRj
egqj)

exp(iτHg
j /p) exp(φ3µR′j

ggqj) exp[(is - iτ - iτ′)Hg
j /p - âHg

j ]

exp(φ4µR′′j
gg qj) exp(iHg

j τ′p)] (A.7)
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eq A.6 and some rearrangement, the generating functionG can be written as

where

is just the dipole correlation function of thejth mode needed for computation of the single-photon absorption within the Condon
approximation.16 It is interesting to note that

The notations appearing in eq A.9 are the same as in ref 18

The 14 coefficientsψi(i ) 1, ..., 14) in the generating function eq A.8 are

where

G ) exp{φ1
2ψ1 + φ2

2ψ2 + φ3
2ψ3 + φ4

2ψ4 + 2φ1φ2ψ5 + 2φ1φ3ψ6 + 2φ1φ4ψ7 + 2φ2φ3ψ8 + 2φ2φ4ψ9 + 2φ3φ4ψ10 + 2φ1ψ11 +

2φ2ψ12 + 2φ3ψ13 + 2φ4ψ14}∏
j)1

M

øj0(s, â) (A.8)

øj0(s, â) ) [ agjaej

(bgj + bej)
2 - (agj + aej)

2]1/2

exp{imq0j
2

p

(bgj - agj)(bej - aej)

bej - aej + bgj - agj} (A.9)

G|φ1)φ2)φ3)φ4)0 ) Tr exp(-isHe/p) exp(isHg/p - âHg) ) ∏
j)1

M

øj0(s, â) (A.10)

agj )
ωj

g

sin(ωj
gτc)

, bgj )
ωj

g cos(ωj
gτc)

sin(ωj
gτc)

, τc ) -s - iâp (A.11)

aej )
ωj

e

sin(ωj
es)

, bej )
ωj

e cos(ωj
es)

sin(ωj
es)

(A.12)

ψ1 ) ∑
j)1

N (µR′′′j
ge

2
)2

2p

im

(bgj + bej)

(agj + aej)
2 - (bgj + bej)

2
(A.13)

ψ2 ) ∑
j)1

N (µRj
eg

2
)2

2p

im

(bgj + beg)

(agj + aeg)
2 - (bgj + bej)

2
(A.14)

ψ3 ) ∑
j)1

N (µR′j
gg

2
)2

2p

im(agj
τ )2 [(bgj + bej)[(bgj + bgj

τ )2 + agj
2] - 2(agj + aej)agj(bgj + bgj

τ )

(agj + aej)
2 - (bgj + bej)

2
+ (bgj + bgj

τ )] (A.15)

agj
τ )

ωj
g

sin(ωj
gτ)

, bgj
τ )

ωj
g cos(ωj

gτ)

sin(ωj
gτ)

(A.16)

ψ4 ) ∑
j)1

N (µR′′j
gg

2
)2

2p

im(agj
τ′)2 [(bgj + bej)[(bgj + bgj

τ′)2 + agj
2 ] - 2agj(agj + aej)(bgj + bgj

τ′)

(agj + aej)
2 - (bgj + bej)

2
+ (bgj + bgj

τ′)] (A.17)
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where

ag
τ′ )

ωj
g

sin(ωj
gτ′)

, bg
τ′ )

ωj
g cos(ωj

gτ′)

sin(ωj
gτ′)

(A.18)

ψ5 ) ∑
j)1

N µR′′′j
ge

2

µRj
eg

2

2p

im

sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

(A.19)

ψ6 ) ∑
j)1

N µR′′′j
ge

2

µR′j
gg

2

2p

im

(sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e ) cos(ωj

gτ) +
sin(ωj

gτ)

ωj
g

[cos(ωj
gτc) - cos(ωj

es)]

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

(A.20)

ψ7 ) ∑
j)1

N µR′′′j
ge

2

µR′′j
gg

2

2p

im{ (-)(sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e )sin(ωj

gτ′)

sin(ωj
gτc)

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

+

(cos(ωj
gτc) sin(ωj

es)

ωj
e

+
cos(ωj

es) sin(ωj
gτc)

ωj
g )[cos(ωj

gτc) sin(ωj
gτ′)

sin(ωj
gτc)

+ cos(ωj
gτ′)]

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)] } (A.21)

ψ8 ) ∑
j)1

N µR′j
gg

2

µRj
eg

2

2p

im{ (-)(sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e ) sin(ωj

gτ)

sin(ωj
gτc)

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

+

(cos(ωj
gτc) sin(ωj

es)

ωj
e

+
cos(ωj

es) sin(ωj
gτc)

ωj
g )[cos(ωj

gτc) sin(ωj
gτ)

sin(ωj
gτc)

+ cos(ωj
gτ)]

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)] }, (A.22)

ψ9 ) ∑
j)1

N µR′′j
gg

2

µRj
eg

2

2p

im

(sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e ) cos(ωj

gτ′) +
sin(ωj

gτ′)

ωj
g

[cos(ωj
gτc) - cos(ωj

es)]

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

(A.23)
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These functions have some notable symmetries. The pairs of functions (ψ3, ψ4), (ψ7, ψ8), (ψ6, ψ9), and (ψ13, ψ14), which are
functions of the time variables (s, τ, τ′), are symmetric with respect to exchangingτ′ andτ. ψ10 is also symmetric with respect to
exchanging the time variablesτ andτ′.

The correlation functionQ is now found from eq A.3 to be

ψ1, ψ2, ψ3, andψ4 do not appear in this final result.

ψ10 ) ∑
j)1

N µR′′j
gg

2

µR′j
gg

2

2p

im

(cos(ωj
gτc) sin(ωj

es)

ωj
e

+
cos(ωj

es) sin(ωj
gτc)

ωj
g )

(ωj
g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

×

{ [ωj
g sin(ωj

es) + ωj
e sin(ωj

gτc)]

ωj
g cos(ωj

gτc) sin(ωj
es) + ωj

e cos(ωj
es) sin(ωj

gτc)
× [cos(ωj

gτc)

sin(ωj
gτc)

sin(ωj
gτ′) + cos(ωj

gτ′)][cos(ωj
gτc)

sin(ωj
gτc)

sin(ωj
gτ) + cos(ωj

gτ)] -

sin(ωj
gτ′)

sin(ωj
gτc)

[cos(ωj
gτc)

sin(ωj
gτc)

sin(ωj
gτ) + cos(ωj

gτ)] -
sin(ωj

gτ)

sin(ωj
gτc)

[cos(ωj
gτc)

sin(ωj
gτc)

sin(ωj
gτ′) + cos(ωj

gτ′)]} +

∑
j)1

N µR′′j
gg

2

µR′j
gg

2

2p

im{ (sin(ωj
gτc)

ωj
g

+
sin(ωj

es)

ωj
e )[ sin(ωj

gτ)

sin(ωj
gτc)

sin(ωj
gτ′)

sin(ωj
gτc)

]
(ωj

g

ωj
e

+
ωj

e

ωj
g) sin(ωj

gτc) sin(ωj
es) + 2[1 - cos(ωj

gτc) cos(ωj
es)]

-
sin(ωj

gτ)

ωj
g

sin(ωj
gτ′)

sin(ωj
gτc)} (A.24)

ψ11 )
µR′′′0

ge

2
+ ∑

j)1

N µR′′′j
ge q0j

2

sin(ωj
es

2
)

sin(ωj
es

2
) +

ωj
g

ωj
e

tan(ωj
gτc

2
) cos(ωj

es

2
)

(A.25)

ψ12 )
µR0

eg

2
+ ∑

j)1

N µRj
egq0j

2

sin(ωj
es

2
)

sin(ωj
es

2
) +

ωj
g

ωj
e

tan(ωj
gτc

2
) cos(ωj

es

2
)

(A.26)

ψ13 )
µR′0

gg

2
+ ∑

j)1

N µR′j
ggq0j

2

ωj
e sin(ωj

es

2
)[cos(ωj

gτ) - sin(ωj
gτ) tan(ωj

gτc

2
)]

ωj
g cos(ωj

es

2
) tan(ωj

gτc

2
) + ωj

e sin(ωj
es

2
)

(A.27)

ψ14 )
µR′′0

gg

2
+ ∑

j)1

N µR′′j
gg q0j

2

ωj
e sin(ωj

es

2
)[cos(ωj

gτ′) - sin(ωj
gτ′) tan(ωj

gτc

2
)]

ωj
g cos(ωj

es

2
) tan(ωj

gτc

2
) + ωj

e sin(ωj
es

2
)

(A.28)

Q(s, τ, τ′, â) ) [(2ψ5)(2ψ10) + (2ψ5)(2ψ13)(2ψ14) + (2ψ10)(2ψ11)(2ψ12) + (2ψ6)(2ψ9) + (2ψ6)(2ψ12)(2ψ14) +

(2ψ9)(2ψ11)(2ψ13) + (2ψ7)(2ψ8) + (2ψ7)(2ψ12)(2ψ13) + (2ψ8)(2ψ11)(2ψ14) + (2ψ11)(2ψ12)(2ψ13)(2ψ14)]ø0(s, â) (A.29)
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Appendix B: An Expression for the Average Energy in the Excited Electronic State

In this Appendix, we detail the derivation of eq 2.18 for the average energy in the excited state. By definition, the average energy
in the excited state is obtained by averaging the transition probability per unit of time (|cBA

(2)(t)|2/tII ′) over all initial states but
summing over all final states weighted by their energy as defined in eq 2.17. Following the same derivation as for the spectrum, we
can write the numerator of eq 2.17 as

where

Comparing with eq 2.4, we note that only an additional factorEB, the energy of the final stateB, appears inside the summation over
final statesB’s.

Relative to the bottom of the potential well of the ground state, the energyEB of a given vibrational state in the electronic excited
state is defined asEB ) Ev

e + ∆E, whereEv
e is the corresponding eigenvalue ofHe minus ∆E (cf. eq 1). By following the same

procedure for deriving eq 2.8,Eδδ′δ′′δ′′′
(2) is rewritten as

where

is the average energy of the ground state.
We average the numerator and denominator of eq 2.17 over two Gaussian pulses separately

The denominator of eq B.4 is justg(ω0, ∆, â) (cf. eq 2.10), while the numerator of eq B.4 becomes

The (∂/∂â) terms will produce the third term of eq 2.18. By integrating by parts, theip(∂/∂s) terms produce the first, second, and last
terms of eq 2.18.

∑
δδ′δ′′δ′′′

eδ
k′R′ eδ′

kR eδ′′
k′R′/ eδ′′′

kR/ Eδδ′δ′′δ′′′
(2)

Eδδ′δ′′δ′′′
(2) ) ∑

BA

EBδ(ωBA - ω - ω′)pA ∑
RR′[〈Bv|µδ

BR|Rv〉〈Rv|µδ′
RA|Av〉

ωRA - ω
+

〈Bv|µδ′
BR|Rv〉〈Rv|µδ

RA|Av〉

ωRA - ω′ ] ×

[〈Av|µδ′′′
AR|R′v〉〈R′v|µδ′′

R′ |Bv〉

ωR′A - ω
+

〈Av|µδ′′
AR|R′v〉〈R′v|µδ′′′

R′ |Bv〉

ωR′A - ω′ ] (B.1)

Eδδ′δ′′δ′′′
(2) ) 1

2π∫-∞

∞
ds eis(ω+ω′) e-is∆E/p ∫-∞

0
dτ e-iτω+λτ ∫0

∞
dτ′ e-iτ′ω-λτ′(ip ∂

∂s
- ∂

∂â)Qδδ′δ′′′δ′′(s, τ, τ′, â) +

1
2π ∫-∞

∞
ds eis(ω+ω′) e-is∆E/p ∫-∞

0
dτ e-iτω+λτ ∫0

∞
dτ′ e-iτ′ω′-λτ′(ip ∂

∂s
- ∂

∂â)Qδδ′δ′′δ′′′(s, τ, τ′, â) +

1
2π ∫-∞

∞
ds eis(ω+ω′) e-is∆E/p ∫-∞

0
dτ e-iτω′+λτ ∫0

∞
dτ′ e-iτ′ω-λτ′(ip ∂

∂s
- ∂

∂â)Qδ′δδ′′′δ′′(s, τ, τ′, â) +

1
2π ∫-∞

∞
ds eis(ω+ω′) e-is∆E/p ∫-∞

0
dτ e-iτω′+λτ ∫0

∞
dτ′ e-iτ′ω′-λτ′(ip ∂

∂s
- ∂

∂â)Qδ′δδ′′δ′′′(s, τ, τ′, â) +

〈Eg〉 × denominator of eq 2.17 (B.2)

〈Eg〉 ) -1
Zg(â)

∂Zg(â)

∂â
(B.3)

Ev
e(ω0, ∆, â) )

∫-∞

∞
dω

exp{-
(ω - ω0)

2

2∆2 }
∆x2π

∫-∞

∞
dω′

exp{-
(ω′ - ω0)

2

2∆2 }
∆x2π

∑
j

Eej[∑
i

|cji
(2)|2

tII ′
pi]

∫-∞

∞
dω

exp{-
(ω - ω0)

2

2∆2 }
∆x2π

∫-∞

∞
dω′

exp{-
(ω′ - ω0)

2

2∆2 }
∆x2π

∑
j

[∑
i

|cji
(2)|2

tII ′
pi]

(B.4)

1
2π ∫-∞

∞
ds∫-∞

0
dτ ∫0

∞
dτ′ exp[iω0(2s - τ - τ′) -

is∆E/p]{exp[-(∆2/2)(s - τ - τ′)2 - (∆2/2)s2](ip ∂

∂s
- ∂

∂â)[Qδδ′δ′′′δ′′(s, τ, τ′, â) + Qδ′δδ′′δ′′′(s, τ, τ′, â)] +

exp[-(∆2/2)(s - τ)2 - (∆2/2)(s - τ′)2](ip ∂

∂s
- ∂

∂â)[Qδδ′δ′′δ′′′(s, τ, τ′, â) + Qδ′δδ′′′δ′′(s, τ, τ′, â)]} +

〈Eg〉 × g(ω0, ∆, â) (B.5)
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